Murine model of femoral artery wire injury with implantation of a perivascular drug delivery patch.
نویسندگان
چکیده
Percutaneous interventions including balloon angioplasty and stenting have been used to restore blood flow in vessels with occlusive vascular disease. While these therapies lead to the rapid restoration of blood flow, these technologies remain limited by restenosis in the case of bare metal stents and angioplasty, or reduced healing and possibly enhanced risk of thrombosis in the case of drug eluting stents. A key pathophysiological mechanism in the formation of restenosis is intimal hyperplasia caused by the activation of vascular smooth muscle cells and inflammation due to arterial stretch and injury. Surgeries that induce arterial injury in genetically modified mice are useful for the mechanistic study of the vascular response to injury but are often technically challenging to perform in mouse models due to the their small size and lack of appropriate sized devices. We describe two approaches for a surgical technique that induces endothelial denudation and arterial stretch in the femoral artery of mice to produce robust neointimal hyperplasia. The first approach creates an arteriotomy in the muscular branch of the femoral artery to obtain vascular access. Following wire injury this arterial branch is ligated to close the arteriotomy. A second approach creates an arteriotomy in the main femoral artery that is later closed through localized cautery. This method allows for vascular access through a larger vessel and, consequently, provides a less technically demanding procedure that can be used in smaller mice. Following either method of arterial injury, a degradable drug delivery patch can be placed over or around the injured artery to deliver therapeutic agents.
منابع مشابه
Delivery site of perivascular endothelial cell matrices determines control of stenosis in a porcine femoral stent model.
PURPOSE Endothelial cells, grown within gelatin matrices and implanted onto the adventitia of injured vessels, inhibit stenosis in experimental models. To determine if this technology could be adapted for minimally invasive procedures, the authors compared the effects of cells in an implantable sponge to that of an injectable formulation and investigated the importance of delivery site in a ste...
متن کاملEndovascular injury induces rapid phenotypic changes in perivascular adipose tissue.
OBJECTIVE Accumulating evidence suggests that adipose tissue not only stores energy but also secretes various bioactive substances called adipocytokines. Periadventitial fat is distributed ubiquitously around arteries throughout the body. It was reported that inflammatory changes in the periadventitial fat may have a direct role in the pathogenesis of vascular diseases accelerated by obesity. W...
متن کاملAdventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation.
BACKGROUND Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. METHODS AND RESULTS Eighteen juvenile male crossbred swine were included. Single-injury (40%-60% femoral artery balloon ove...
متن کاملReal-time imaging of mechanically injured femoral artery in mice reveals a biphasic pattern of leukocyte accumulation.
Wire injury of an artery has been recognized as a standard model of vascular inflammation and atherosclerosis; however, the mechanism of leukocyte recruitment has not been studied in this model. In this study, we documented the recruitment of leukocytes to the murine femoral artery after a wire injury. A transluminal mechanical injury was generated by insertion of a wire into the femoral artery...
متن کاملPerivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A.
OBJECTIVE To test the therapeutic activity of perivascular transplantation of encapsulated human mesenchymal stem cells (MSCs) in an immunocompetent mouse model of limb ischemia. APPROACH AND RESULTS CD1 mice underwent unilateral limb ischemia, followed by randomized treatment with vehicle, alginate microbeads (MBs), MB-encapsulated MSCs (MB-MSCs), or MB-MSCs engineered with glucagon-like pep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 96 شماره
صفحات -
تاریخ انتشار 2015